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A new form is given for the general solution to the thin-shock-layer equations 
for the flow over a nearly pIane delta wing. Using this, the soIution described 
conjecturally by Hayes & Probstein for symmetrical flow with attached shock 
waves over a plane delta wing is realized numerically. The flow construction 
devised for this purpose is applied also to yawed flows. The solutions obtained 
are found to agree moderately well with the results of numerical calculations 
from the full equations, but contain a number of anomalous features character- 
istic of the thin-shock-layer approximation. 

1. Introduction 
I n  this paper, we give a solution to the thin-shock-layer equations for hyper- 

sonic flow which satisfies the boundary conditions appropriate to the flow on 
the compression side of a plane delta wing when the shock wave is attached to 
the leading edges. 

The problem of calculating such flows is of some importance in aeronautics, 
in connexion, for example, with studies of lifting bodies at very high speeds. We 
shall begin by reviewing previous work in applying the thin-shock-layer approxi- 
mation to it. As a point of departure we take Messiter’s (1963) paper, in which 
the approximation in the form in which we shall use it was first formulated, and 
in which a solution to the problem which has been used and extended by many 
subsequent investigators was first given. 

Messiter’s development of the thin-shock-layer approximation as an improve- 
ment on Newtonian theory resulted from the following considerations. The 
shock wave on a nearly plane body at incidence to a hypersonic stream will be 
close to the body, at least on the windward side; the shock layer, between the 
shock wave and the body, will be O(E) in thickness, where E ,  the ratio of the 
density upstream of the shock wave to that downstream, becomes vanishingly 
small in the Newtonian limit M-tco, y-f 1. The Mach angle within the shock 
layer is O(s4) in the same limit. Thus Messiter dilated the scales for the co-ordinate 
and velocity component normal the body surface by division by E and dilated 
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the spanwise co-ordinate and velocity component by division by st ,  so that 
the structure of the shock layer, including the central region of conically 
subsonic flow in the case of the delta wing, could be investigated in the limit as 
€ + O .  

Messiter’s calculations were restricted to cases when the shock wave is detached 
from the leading edges of the wing; he remarked, without going into a detailed 
discussion, that when the shock wave is attached “a difficulty arises in matching 
the uniform-flow solution (near the leading edge) to the non-uniform flow over 
the inboard region”. 

The difficulty referred to consists of this: notwithstanding that the scaling 
adopted is motivated by the wish to preserve the extent of the non-uniform region 
within the Mach cone of the wing vertex in the limit 8 -+ 0,  and despite the fact 
that the full equations of motion are elliptic in character in this region (or, more 
precisely, possess one (repeated) real and two complex families of characteristics 
there), the approximate equations which remain after the passage to the limit are 
hyperbolic throughout. Thus, for the attached-shock flow on a plane delta wing, 
the boundary conditions on the shock and at the wing and the fact that the shock 
wave is attached to the leading edge appear to provide complete Cauchy data 
for these equations, so that the requirement (in the case of zero yaw) that the 
flow be symmetrical about the central plane appears to overdetermine the 
problem. 

This difficulty was discussed in greater detail by Hayes & Probstein (1966), 
who gave a conjectural description of the solution which they believed would 
apply for a plane wing with an attached shock. A distinctive feature of this 
solution was an infinite sequence of discontinuities in shock slope. Their dis- 
cussion did not however provide a prescription for the numerical realization of 
this solution, and none has appeared subsequently. The problem of attached- 
shock flows in the thin-shock-layer approximation was attacked rather differently 
by Squire (1967), who avoided the matching problem by relaxing the wing 
boundary condition over a relatively small interval of the span in the non- 
uniform inboard region, so that a smooth solution could be constructed, which 
was in fact appropriate to a wing which was planar over most of its span and 
which deviated from planarity by relatively little over the remainder. Later 
Roe (1970) presented an even simpler solution along the same lines. 

The first attached-shock solution that did not compromise the wing boundary 
condition to overcome the matching difficulty was given by Woods (1970). This 
was particularly simple, comprising as it did a mosaic of regions of constant flow 
separated by permissible discontinuities which are initiated by a jump in shock 
slope, positioned such that the resulting flow is symmetric about the centre- 
plane. Notwithstanding the somewhat counter-intuitive nature of this solution, 
it did reproduce some of the features predicted by Hayes & Probstein, and 
predicted pressure distributions on plane delta wings, both in symmetrical and 
in yawed flow, moderately well. However, it  violated a principle proposed by 
those authors for shock slope discontinuities in thin-shock-layer flow, namely 
that the jump must always represent a transition from super- to subcritical 
flow. In  Woods’s solution, the initial jump is in fact from sub- to supercritical 
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flow. As remarked by Professor Hayes (1971, private communication), com- 
menting on the two distinct solutions given in Woods’s paper for the flow at the 
tip of a rectangular wing: “If sub- to super-jumps are permitted, non-unique- 
nesses appear generously through all thin-shock-layer theories.” The solutions 
given in the present paper do not violate this principle however, and possess 
all the features predicted for the solution sketched in Hayes & Probstein’s 
monograph. 

Other methods have been used to calculate attached-shock flows on delta 
wings. Direct numerical computations, using finite-difference approximations 
to the full equations, have been made by Babaev (1963a, b ) ,  Voskresenskii 
(1968) andKlunker, South & Davis (1971). Generally speaking, these calculations 
have been made for cases which could hardly be regarded as hypersonic, so that 
it has not been possible for us to compare systematically calculations using our 
solution with these ‘exact ’ solutions under conditions in which thin-shock-layer 
theory might be expected to give reasonable results. However, some com- 
parisons are made in 3 4 of this paper. 

An alternative approximate method for calculating hypersonic flows over 
delta wings, initiated by Malmuth (1966) and extended by Hui (1971,1973) and 
Malmuth (1973), has been to treat the non-uniform, conically subsonic region of 
flow, near the centre-line, as a small perturbation to the uniform flow behind the 
oblique shock which a plane wedge a t  the same incidence as the delta wing 
would generate. Malmuth’s work is based on the hypersonic small-disturbance 
theory, but that of Hui (in which, in addition, a simple co-ordinate stretching 
is employed to ensure that the Mach cone from the wing vertex is located exactly) 
does not rely on this approximation, and is applicable down to moderate super- 
sonic Mach numbers. Again, we have performed calculations for comparison 
with some of those made using this linearized approach, and these are presented 
below in § 4. 

In  the next section we outline Messiter’s derivation of the thin-shock-layer 
equations for conical flow, present the appropriate boundary conditions for a 
nearly plane delta wing, and obtain a general solution to these in a new form, 
differing from but equivalent to that given earlier by Messiter. In  the following 
section we describe a procedure for calculating the flow withattached shock waves 
on a delta wing; this is found to be applicable to plane wings in symmetric and 
yawed flow. Some calculations based on this procedure are presented in $4, and 
are compared with the results of other theoretical methods. 

Finally, in $ 5  some concluding remarks are made on the applicability and 
accuracy of thin-shock-layer theory for attached-shock flows. 

2. The approximate equations and their general solution 
Figure 1 shows the position of the wing and the direction of the undisturbed 

incident flow relative to a set of Cartesian axes with origin a t  the wing vertex. 
We use new independent variables 

x = 511, y = Y/ZS tan a, z = Z / Z ~  tan a, (1) 
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FIGURE 1. Co-ordinate system. 

and, in terms of these, write the dependent variables as 

(2) 

Z(Z,y,Z) = V,(cosa+~sinatanau(y,z)), 
G(Z, jj, 5) = V,esinav(y, x) ,  

W ( Z ,  I, 5) = V, €4 sin aw(y, z),  

? i ( % , j j , E )  = ij, V z  sin2a(1 +~p(y,z))+p,,  

i j (% y, 3) = P a w  +P(Y, 4). 

- 

Here the barred symbols Z, . . . , Z, . . . , denote unscaled, dimensional quantities, 
while the unbarred symbols denote the corresponding scaled, dimensionless 
quantities. The small parameter E is taken to be the density ratio across a shock 
wave lying in the Z, 5 plane: 

y-1 
' = jfl (lf (y - 1) M2, sin2a ( 3 )  

The passage to the limit E + 0 is understood to be effected by the double (New- 
tonian) limit M, sin a + 00, y + 1, so that (y - 1) M2, sin2 a remains a constant 
greater than zero. 

When expressed in terms of the scaled variables, and after this passage to the 
limit, the full equations of motion for the steady flow of an inviscid perfect gas 
reduce to 

avpy+awpz = 0, (4.4 
au aU 

(v-y)-+(w-2)- aZ = 0, 
aY 

aV av ap 
(v-y)-+(w-z)- = -- 

aY a2 ay' 

aw aW 
(v-y)-+(w-2)- 82 = 0. 

aY ( 4 4  

The shock wave is assumed to be conical, and given in scaIed co-ordinates by 

Y = Y S ( 4 .  ( 5 )  



Hypersonic flow over plane delta wings 365 

The Rankine-Hugoniot equations (again in the limit e + 0)  then give the following 
boundary conditions for u,  v, w and p on this curve: 

w, = w(y,, 2) = - YL, (6 4 
p,  =p(ys,z) = 2y,-2zy;-y;2-1. ( 6 4  

Here we have written y: for dy,/dz. 

it as 
The wing surface is, from the conditions of the problem, conical, and we write 

Y = Yb(Z). (7) 

The flow tangency condition on this surface yields two alternative conditions. 
(a )  If the flow at the wing surface is not radial, then the slope of the conical 

projection of a sheet of streamlines which originates from a ray on the shock, 
which we shall refer to as a ‘conical streamline ’, must coincide with the slope of 

( b )  If, however, the flow is radial, then the wing surface must be the locus of 
singular points of the equation for conical streamlines, 

Other boundary conditions which arise (for example, on the plane of sym- 
metry of the wing or its leading edges) will be discussed with the solutions to 
which they apply. 

We now give a general solution to these equations and boundary conditions 
which differs somewhat from that originally given by Messiter, and which we 
shall find lends itself more readily to the calculation of the Hayes & Probstein 
solution and indeed to the calculation of flows with attached shock waves in 
general. 

As has been pointed out in previous work, the solution to the problem as a 
whole depends on the solution of (4a, d), which form a pair of quasi-linear hyper- 
bolic first-order equations. The.characteristics for this pair are the conical stream- 
lines and lines z = constant. We note from (4d) that w is constant along the 
conical streamlines, and so a transformation into characteristic co-ordinates is 
effected by transforming (4a, d) into a pair of equations for v and y in terms of 
z and w as independent co-ordinates. These are 

avpw - ay/az = 0,  (9) 

aypz = (v - Y)/(W - 4, (10) 

v = a$laz, y = a$pw (11) 

and are now linear. If a function #(w, z )  such that 
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is introduced, then (9) is satisfied identically and (10) becomes 
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This is an example of the Euler-Poisson-Darboux equation (see, for example, 
von Mises (1958, pp. 165-167) for a rather complete discussion, with references). 
In  fact, if we substitute x = - w for w, (1  2) becomes 

which may be recognized as having precisely the same form as Riemann’s 
equation for the unsteady flow in one dimension of a perfect gas with adiabatic 
index y = Q. Indeed, it belongs to the special class of cases (when y is of the 
form (2N + 1)/(2N - 1), N an integer) for which there exist elementary explicit 
solutions; for (12a) the solution is 

#(x, Z )  = P(z) + G(z) - +(x + z )  (F‘(x) + G ( z ) ) ,  (13) 

where F and G are arbitrary twice-differentiable functions. Reverting to the 
dependent variables v and y, in terms of z and w, we thus have 

W ( Z ,  w) = f (Z)  + g(w) + (w - Z)f’(Z), 

Y(Z, w) = f ( z f  +g(w) - (w - 2) g’(w), 

(14a) 

(lab) 
where f and g are arbitrary differentiable functions related to F and G. 

These arbitrary functions must be determined by the boundary conditions. 
We first consider those a t  the shock wave, y = y&). By differentiating (14a) 
along this curve and using (6b, c) we obtain a relation connecting the function 
fwith the distribution of sidewash WJZ) on the shock: 

(15) 

A similar relation for the function g is obtained by differentiating (14b); here 
it is convenient to regard the shock wave as being defined by the inverse of the 
relation w = w,(z), say z = z,(w); then we obtain 

f ” ( Z )  = - w&) [l - (w&) - z)-”. 

g”(w) = - z;(w)/(w - Z,(W))2. (16) 

In  these formulae, a prime again denotes differentiation, so that, for example, 

Equations (15) and (16) determine f and g only to within arbitrary linear 
terms. Further, linear terms in these functions are interchangeable; from (14) 
it  is clear that if a flow is specified by f = f1(z) and g = g,(w), then it is equally 
specified by 

g”(w) = d2g/dw2. 

(17) I f 2 ( 4  = fl(4 + A.2 +BY 
g,(w) = g,(w) - A w  - B, 

where A and B are any constants. 

flow yields 
The boundary condition (8a) a t  the wing y = y&) for the case of non-radial 

f’@) +g’(w) = Y&)Y (18) 



Hypersonic flow over plane delta wings 367 

so that on the wing surface we must have w = constant (which of course is a 
direct consequence of (4d )  since in this case the wing surface is a conical stream- 
line). In  the alt,ernative case of radial flow on the surface, we have from ( 8 b )  
and (14b) 

Yb@) = Y ( 2 ,  2) = f ( z )  + (19) 

In  the latter case, the functionsf and g can be eliminated from (15), (16) and 
(19) to give the functional-differential equation for w, first derived by Messiter 
(1963, equation 3.21): 

This equation has been widely used to calculate flows with detached shock waves. 
However, it  will be shown in what follows that the new formulation of the 
solution in terms of the functions f and g, while in principle equivalent to Messiter’s 
original solution, greatly clarifies problems arising in the calculation of attached- 
shock flows. 

Once (4a, d )  have been solved, the calculation of the pressure distribution is a 
matter of quadrature. From (4c) and (14a) we have 

= - (zu - x)”(x) ,  

which, using (14b), we can integrate to obtain 

p(z ,  w) = p,(z) +f”( z )J”  g”( t )  ( t -  z)2dt. 
w* (2) 

Finally, we note that the transformation used in this section cannot be used 
in a region of constant w, for there the Jacobian vanishes. Further, in flows in 
which &>lay changes sign, it will not be one-to-one. This will be the case along 
streamlines (lines w = constant) which originate at points on the shock at which 
w’(x) changes sign, and from (15) we see that such points occur either where 
f” ( z )  changes sign or (in a more dramatic fashion) where ( ~ ~ - 2 ) ~ -  1 changes 
sign. In  either event it should be possible to divide the flow field into a number 
of regions in each of which the transformation and the resulting solution are 
valid. This is certainly the case in the calculations presented below. 

3. Construction of the Hayes & Probstein solution 
The flow in the immediate neighbourhood of the leading edge of a plane delta 

wing a t  y = 0, x = SZ may be expected to be uniform, corresponding to that 
behind a skewed oblique plane shock wave attached to the leading edge. Using 
the shock equations (6a-d), this flow is found to be 

v = 0, w = wo, p = 2w0sz-w;-1, ys = w,(Q-x), (22) 

where W O  = +[Q - (Q2- a),]. (23) 

From (23), it  is clear that the shock will not be attached for Q < 2. On the wing 
surface inboard of the leading edge, for i2 2 z 2 w,,, boundary condition (a) 
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FIGURE 2. Flow-field construction. 

applies. Thus, from (18), we havef”(z) = 0 in this interval, and subsequently, 
from (15), either 

WL(Z) = 0 (244 

(24b) or w,(x)-2 = & 1.  

The first case corresponds to a plane shock wave, and the second to the ‘simple 
wave’ solution previously described by one of us (Woods 1970). The existence of 
two distinct flows each satisfying the same boundary conditions in this interval, 
together with the fact that they can be patched together with a degree of 
arbitrariness, provides the key to the flow construction which we now propose, 
and which is illustrated by figure 2. We suppose that the plane attached shock 
wave, with its associated uniform flow, continues inboard from the leading edge 
0 to the point A (z = 1 + wo, y = 1 - wo), at which the shock wave corresponding 
to the simple wave solution [equation (24b)l has the same slope. The simple 
wave solut,ion is joined onto the uniform flow a t  this point, and along the stream- 
line AB’, and is continued until it  is terminated arbitrarily at the point A’ 
(at x = 1 +wo-A), at which the plane shock solution ( 2 4 a )  is reimposed, with 
w, = wo - A. This continues until the point D (z  = wo) is reached; here the type 
(a)  boundary condition on the wing surface ceases to apply, and we no longer 
havef(z) = 0. Thus, in the flow field between the leading edge and the line BD 
(at z = wo) we have three separate regions: 

(i), I n  OAB we have uniform flow, with 

2, = 0, w = wo, (25) 

and ys = w 0 ( Q - x ) .  (26) 

f ( x )  = 0, g(w)  = *((wo- l)Z--(W- 1 ) 2 ) ,  (27) 

y,(x) = ~ [ ( l - W o ) ~ - ( X - l ) ~ + l ] .  (28) 

(ii), I n  AA’B’B we have simple wave flow, with 

while on AA’ 

We remark that the fact that one of the arbitrary functions in the general 
solution, f(z), is constant adds point to the application of the term ‘simple wave ’ 
to the flow in this region. 

(iii)a In  A’B’D we have uniform flow, with 

v = -A(1-Wo)-+A2, w = w0-A, (29) 
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and the shock wave A’D is given by 

y, = 1 +w~-A(l+w,)+&A2-Z(W,-,-A). (30) 

The solution described so far provides the boundary conditions required to 
determine the solution in the region BCED, which is also divided into three 
parts. 

(i), I n  BCB’, the general solution (14) may be used. The function g(w) is given 
on the boundary BB’ from the previous solution 

g(w) = g(W0 - - (w - 

and since now boundary condition (b )  applies on the wing surface BC, from (19) 
we have 

This solution provides the boundary value 

on the line B‘C, given by 

f(z) = &-(z- 1)2- (wo- 1)2]. 

~(2,wo-A) = -&(z-wO+A)~ 

~ ( 2 ,  W, - A) = S(Z - W, + A)2. 

(32) 

(33) 

(ii), I n  B‘CD, w is constant ( = wo- A), and the general solution is not applic- 
able; however, from (4a) and (32) we have immediately 

v = V(Z) = - i ( ~  - W O  + A)2, (34) 

and this gives sufficient boundary data for the adjacent region DCE. 

an ordinary differential equation for w,(z) on the shock: 
(iii), I n  DCE, the shock boundary condition (15) on DE may be regarded as 

since it turns out from elementary consideration of streamline geometry that 
f” ( z )  in this region is precisely that in region BB’C, and is therefore known. The 
initial condition for w, at D ( z  = wo) is not however its value w,-A on A’D; 
since f’(z) changes discontinuously at z = zoo, there is a jump in u on this line, 
and, consequently, a jump in shock slope at D. The shock slope just inboard of 
D is calculated from the slope of the streamline DC a t  this point; this is 

A- 1 +A-’ = S, 

say, and from the shock boundary conditions (6 b, c), we have 

w,(w, - ) = ~(XWO - 1 )/{S - WO + [(S + wJ2 - 414). (36) 

Integration of (36) with the initial value (36) then determines w,(z) on the shock 
wave DE, and also, by a further integration of (6c), k e s  the position of this 
segment of the shock wave. These integrations are terminated at z = w,-A, 
inboard of which point f” ( z )  is again zero, for across the jump in shock slope a t  
A D  the value of w, is also discontinuously reduced, i.e. ws(wo- ) < wo-A, and 
so between the points C ( z  = w-A) and G (z = w,(wo-)) on the wing surface, 
the type (a)  boundary condition again applies. Because of this, f ” ( z )  is in fact 

24 F L U  79 
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zero throughout the region CGFE, and the shock wave segment E F  is therefore 
straight, but because of the discontinuous change in f '(2) there is a t  E another 
jump in shock slope. The region CEG'G is thus divided into two parts. 

(i), I n  CEG'G, knowing that f " ( z )  = 0, we may, from (17), set f ( z )  = 0, i.e. 
transfer all linear terms to g(w). The boundary conditions w = y = 0 on the wing 
surface (w = ws(wo - )) then give g(wo - ) = g'(w, - ) = 0, and we have finally 

where g"(w) has been determined, through (16), from the function w,(z) obtained 
by integration on D E ,  as described in (iii), above. 

(ii), In  EFG', the flow is uniform, and is given by 

w = w,(w~ - A - ), 
y = ~ , ( w O  - A) + (W - A) w,(w~ - A - ) - [w,(w~ - A - )I2 - 1. 

As we have noted, there is a jump in shock slope at E, and the value of w, just 
inboard of it, w,(wo - A - ), is calculated from the slope of the dividing streamline 
EG' through an expression analogous to (36). From the solution given in (i), 
above, this slope is 

w~(w, -  A + ) 
g"(w) dw. s wdwo-) 

On the line GG'F (at z = w,(wo - )) boundary conditions similar to those on 
BB'D now apply, so that the calculation of the flow in the region GG'FIH 
follows the steps outlined in (i)a, (ii)a and (iii), above. There is however this 
difference: because of the discontinuity in shock slope a t  E,  the line EG'H is a 
shear discontinuity, separating flows characterized by different values of w. 
Thus, as we indicate in figure 2, the region G'FH'JHG' of constant w extends 
inboard beyond H ,  the inboard terminus of the next interval GH on which 
boundary condition ( b )  applies. As a result, there is no jump in shock slope a t  the 
point I on the shock (where the numerical integration of (35) ends in this cycle) 
but there is a jump a t  the point K. 

The construction is then continued inboard, in a sequence of cycles in which a 
segment of curved shock is generated by numerical integration (reflecting the 
applicability of boundary condition ( b )  in that interval of z )  and is followed by a 
number of straight shock segments (reflecting the applicability of boundary 
condition (a)) separated by discontinuities in slope. Unhappily (from the com- 
putational point of view) each successive cycle differs from the previous one; in 
fact, the number of jumps in shock slope between each segment of curved shock 
increases a t  the rate of one every two cycles. In  addition, the intervals over which 
numerical integration is performed are found to become progressively shorter; 
and, since each successive integration employs the results in interpolated form of 
the previous integration, the calculation soon becomes ill conditioned. For this 
reason, we cannot assert without reservation that the flow construction con- 
verges in the sense that, for a given initial choice of the determining parameter 
A, the construction outlined above proceeds such that by continuing it for a 
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sufficiently large number of cycles we can reduce Iz- w,(z)l to as small a value 
as we please. We observe, however, that in the first few cycles Iz - w,(z) I has been 
found, for all values of A and 0, to diminish markedly after each cycle. In  the 
following section we shall briefly describe an approximation to which we have 
resorted after the first three cycles of integration, and which is found (numerically) 
to converge. So in what follows we shall speak of ' convergence ' without further 
qualification. 

The problem of constructing a flow field for a delta wing with attached shock 
waves is thus reduced to that of determining the value(s) of the parameter A for 
which the boundary conditions in the non-uniform central region are satisfied. 
For the symmetrical flow case (at zero yaw), for example, A must be such that 
the flow construction converges to I x -  wsl = x = 0. 

Finally in this section, we outline the procedure for calculating the surface 
pressure a t  a given point on the span (a given value of z ) ,  once the flow field has 
been determined. We shall consider a point lying between B and C in figure 2. 
First, the pressure a t  the shock wave is calculated from (64 .  Then the integral 
in (21) is evaluated, a t  the appropriate value of z ,  for the region between the 
shock wave and the streamline DC, and for the region between the streamline 
B'C and the wing surface. There remains the pressure difference between these 
two streamlines. In  the region B'CD, as is pointed out above, the general solution 
is inapplicable, and a particular solution w = constant, w = v(z) holds. The 
pressure is thus [from (4c)l a linear function of y at fixed z in this region, and we 
have, in summary, 

Here the suffixes refer to  points and streamlines in figure 2 .  
The surface pressure a t  a point at whichf"(z) = 0 (that is, a t  which boundary 

condition (a)  applies) is, from (21), identical with the shock wave pressure at the 
same value of z. Thus the jumps in the pressure distribution which are evident 
in figures 3-6 are due as much to effects within the flow field as to the discon- 
tinuous changes in shock slope. 

4. Calculations 
The flow construction described in the previous section has been programmed 

for the Canterbury University Burroughs B67 18 computer. Each interval over 
which (35) had to be integrated was divided into five subintervals, and the values 
of w(z)  and w'(z) at the ends of each subinterval converted into a, cubic spline 
approximation for z as a function of w for the corresponding interval in w, the 
coefficients of which were stored for subsequent calculation of g"(w), using (16). 

As has been pointed out above, the flow construction, if convergent, involves 
(in principle) an infinite number of steps. We have found that, on the one hand, 
only three cycles of calculation as described in Q 3 are required to reduce Iz - W J  

24-2 
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(ii) \ 
(iii) 

- 1.0 

P 

I I I I 

4 3 2 1 0 
z 

I I I I J 
4 3 2 1 0 

z 

1 l ' O  

0-6 

Ya 
0.4 

0.2 

4 3 2 1 

z 

FIGURES 3 (a, 6 ) .  For legend see next page. 

to a small fraction of its original value (0.5 yo for Cl = 2-25, and less for greater 
values of C l ) ,  while on the other hand, evidenceof numerical instability has 
appeared in the fourth cycles in some cases. The latter could perhaps have been 
delayed by refining the program, but it is evident that, as the intervals over 
which integration and interpolation become smaller, the value of g"(w) becomes 
larger, and it becomes increasingly difficult to avoid numerical ill-conditioning. 
We have therefore adopted the following approximation after the third cycle. 
Referring to figure 2, we know that after the third numerical integration we have 
boundary conditions on the line IH'H, i.e. a known distribution of w on I F  
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------ (c) 2r 

- 1  y 
FIGURE 3. (a )  Pressure distributions and (b )  shock profiles for (i) R = 2.5, (ii) R = 3.0 and 

(iii) R = 4.0. (c )  Correction function for normal-force coefficient. 

and a known constant value of w on H’H. We thereafter replace the distribution 
of w on IH’ by a constant value, equal to the mean of w&) taken over the 
segment PI of the shock. This is, from (6c), simply equal to (y I -yF) / ( zF-z l ) .  
The subsequent calculation involves only piecewise-constant flow regions and 
straight segments of shock, and proceeds by purely algebraic computation in a 
manner similar to the flow construction described by Woods (1970), in which 
the whole flow field was in fact made up of such constant regions. This approxi- 
mation to the actual flow converges in the sense we have spoken of in the previous 
section: we have indeed found that as few as five steps are required to satisfy 
the condition Iz-wsl < 

The calculation of the flow over a wing at zero yaw requires that we find that 
value of the determining parameter A for which the construction converges to 
w = z = 0 (to the accuracy required). This we have done by the method of false 
position, and have found that at most four calculations were needed to locate the 
convergence point to within a distance of 0.1 yo of R (the reduced span) from the 
wing centre-line. 

In  figures 3(a) and (b)  we show respectively the spanwise distribution of the 
pressure correction term p and the shock shape gs(z) for plane delta wings with 
reduced spans given by R = 2.5, 3 and 4. From these and other calculations, 
we have prepared the curve for Messiter’s normal-force correction coefficient 
F(R),  shown in figure 3(c). In  his paper Messiter (1963) showed that, in the thin- 
shock-layer approximation, the normal-force coefficient for a delta wing in 
hypersonic flow (assuming the pressure on the leeward side to be negligible) 
could be expressed as the sum of the Newtonian value and a correction term of 
order e,  which depends only on the reduced span R of the wing: 

C, = 2sin2a+21yM,2+esin2aF(R), 

where P(R)  = - p(0 ,z ;  Q)dz. :sa 
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FIGURE 4. Comparison of predicted pressure distributions. M = 5.08, 
cc = 14", A = 50'. --, this paper; - - - - - - , Klunker et al. (197 1). 
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FIGURE 5. Comparison of predicted pressure distributions for conditions close to shook 
detachment. M ,  = 4, a = 20", A = 50". - , this paper; - - - - - - , Klunker et al. (1971). 

The curve which has been derived from our present calculations is indistinguish- 
able from that obtained by one of us (Woods 1970) using an invalid flow con- 
struction. 

I n  figure 4 we compare the pressure distribution predicted by thin-shock-layer 
theory with a calculation performed using the method of lines by Klunker et a,!. 
(1971) for a plane delta of 50" sweep-back at 14" incidence to flow at M = 5-08. 
The latter appears to be representative of the most accurate numerical cal- 
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culations available, although for our purpose the Mach number is somewhat 
low; the value of the 'small' parameter e for this case is 0.718. Evidently, since 
the overall agreement is rather good, some of the errors inherent in thin-shock- 
layer theory have cancelled each other fortuitously for these flow conditions. 
This is not however the case for flow conditions close to shock detachment, 
where the differences are more substantial. This is illustrated in figure 5, where 
we compare the pressure distribution obtained by Klunker et al. for the same 
wing at 20" incidence to flow a t  M = 4 with that given by our solution. Whereas 
in the 'exact ' solution the extent of the non-uniform central flow region is almost 
75 yo of the span, in the thin-shock-layer approximation it is less than 50 %. 

We have been able to adapt the Hayes & Probstein solution to cases of asym- 
metric flow, on a delta wing a t  yaw, with the shock wave attached at both 
leading edges. This is done simply by treating the yawed delta as equivalent to 
two delta wings with different spans (i.e. values of Q) and calculating flows for 
each, such that, if one flow converges to the station zf a t  which the ordinate of 
the shock wave is ysf, the other flow converges to - zr, with the same final shock 
wave ordinate ysf. Thus for an asymmetric flow of this sort, two separate values 
of A must be found, and the method of false position in this case is accordingly 
more tedious. We have illustrated this procedure (figure 6) by computing by our 
method a case treated by Hui (1973) using the improved linearized method 
which we have described in the introduction. This is for a delta, wing of sweep 
angle 52.6" yawed by 22.5" and at an incidence of 10' to an M = 10 flow.? 
Because one edge is close to detachment, the pronounced departure of the thin- 
shock-layer result from the exact result which we remarked on above is again 
evident. It should be recalled that although Hui uses a linearized theory, he has 
adapted it such that the positions of the Mach cone and the uniform solution 
outboard of it are both exact. 

t It is clear, incidentally, that the figure from which we have taken Hui's result (his 
figure 5 )  should bear the legend of his figure 6. 

FIGURE 6. Comparison of predicted pressure distributions at yaw. M, = 10, 
u = lo", /3 = 22*5O, A = 52.5'. ~ , this paper; - - - - - -, Hui (1973). 



376 B. A .  Woods and C. B. G .  McIntosh 

In  all the calculations which we have presented in this section, the ‘small’ 
parameter e has been numerically quite large. Indeed, it is probably the most 
questionable feature of this approximation that, for y = 1.4, a parameter which 
is supposed to be vanishingly small is always greater than 6. 

5. Discussion and conclusions 
In  this paper we have presented a new general solution to the thin-shock-layer 

equations for conical flow over nearly plane wings. Using this solution, we have 
been able to construct a ‘complete’ realization of the solution for the attached- 
shock flow on a plane delta wing first outlined, and qualitatively described, by 
Hayes & Probstein (1966). This construction has been shown to be also applicable 
to asymmetric flows, as on a plane delta wing a t  an angle of yaw sufficiently 
small that the shock wave is still attached to both leading edges. 

In  the numerical results of our calculations, presented in $4, the thin-shock- 
layer approximation appears to be only moderately accurate in predicting 
overall pressure levels. This shortcoming, and some suggestions for correcting 
it by semi-empirical means, have been discussed by Squire (1 966, 1974). Of more 
fundamental interest is the other feature of the approximation which appears in 
these applications to attached-shock flows, namely the rich yield of anomalous 
and counter-intuitive phenomena predicted. I n  writing of the even greater 
variety of such phenomena predicted by Newtonian theory, Hayes & Probstein 
(1966) suggest that “apparently completely unrealistic anomalous phenomena 
may have significant vestigial counterparts in hypersonic gas flows. An apprecia- 
tion of the former is necessary for an understanding of the latter. Hence the 
anomalies of Newtonian theory are not to be avoided but rather to be sought 
out.” The anomalies in our solution are undoubtedly less conspicuous that those 
of Newtonian theory; whether they have “significant vestigal counterparts ” in 
real flows cannot be decided on the basis of the small number of comparisons 
with ‘exact’ numerical solutions which we have been able to make in $ 4, since 
the latter are for flows at rather low Mach numbers for this purpose. Nor are we 
aware of any experimental results in which such effects as are seen in our solutions 
occur or might be expected. I n  connexion with the possibility of such effects 
being reproduced in finite-difference calculations based on the full equations, it  
should be pointed out that neither the method of ‘optimization’ (used by 
Babaev) nor the method of lines (used by Klunker et air.) seems adapted to the 
discovery of phenomena associated with sharp gradients of flow properties. If 
such phenomena exist, they are likely to be uncovered only by numerical 
procedures specifically devised not to suppress them, just as (for example) the 
method of Stocker & Mauger (1962) for calculating supersonic flow :past cones 
of general cross-section was devised to prevent suppression of the vortical layer. 

To conclude, we remark that some progress has been made towards the 
application of the thin-shock-layer approximation to calculate attached-shock 
flows on non-planar wings, and we hope to devote another paper to this topic. 
However, even greater difficulties arise in this case, of which we shall mention 
only what seems to be the most serious. It is this: for a non-planar wing there 
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does not necessarily exist the equivalent of the ‘simple wave’ solution for the 
plane wing, so that the possibility of transition from one solution to another, 
which we exploited in the flow construction given above, is not open to us. The 
only arbitrary element which we have at our disposal is a super- to subcritical 
jump; and once this is introduced, an even more varied crop of anomalous 
features results, including a counterpart to the Newtonian discontinuity surface, 
with consequent complications in calculation. 
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